
2026年第１期 29 专题论述

DOI：10.19462/j.cnki.zgzy.20250916001

多胁迫下甘蓝型油菜的抗逆机制与遗传改良研究进展
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摘要：甘蓝型油菜（Brassica napus L.）作为全球最重要的油料作物之一，其生产稳定性直接关系到我国食用油安全。植株

在生长发育过程中常遭受干旱、盐碱、低温、高温等非生物胁迫，以及病害和虫害等生物胁迫，显著抑制其正常生长发育，导致

产量和品质下降。近年来，尽管在甘蓝型油菜抗逆生理与分子机制方面已取得显著进展，但关于多胁迫交叉响应机制及系统

性调控网络的综合分析仍较为缺乏，尤其是在种子萌发与成苗阶段的抗逆机制研究尚不充分。本文系统综述了甘蓝型油菜响

应多种逆境胁迫的最新研究进展，重点从生理生化响应、信号转导通路及关键基因功能等多维度进行整合分析，并归纳了不同

抗逆调控策略（如栽培管理、外源物质应用及基因工程）的协同应用潜力。最后，对未来研究方向进行了展望，强调利用多组学

整合分析、基因编辑等技术解析抗逆分子网络的重要性，以期为甘蓝型油菜抗逆遗传改良和高稳定性品种培育提供理论依据。
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据国家粮油信息中心数据显示，我国植物油年

消费总量已突破 4000 万 t，对外依存度较高，保障

油料作物生产稳定性至关重要 [1]。2021 年我国油

菜籽产量为 1471.35 万 t，占国内油料作物总产量

40.72%[2]，甘蓝型油菜作为核心油料作物，其种植面

积与产量均居世界前列 [3]，它不仅是食用植物油、饲

用蛋白和青贮饲料的重要来源，还在生物柴油、工业

及医药用油中扮演关键角色 [4]。然而，甘蓝型油菜

对环境胁迫极为敏感。在长江中下游冬油菜区，秋

播时常遭遇秋季干旱或季节性低温 [5]；而在北方春

油菜区及盐碱地推广区，盐胁迫与干旱胁迫则是限

制作物出苗的主要因素 [6]。因此，提高甘蓝型油菜

抗逆性已成为保障产量稳定的关键育种目标。本文

系统梳理该领域的最新研究进展，深入揭示其抗逆

性调控的内在分子网络机制，以期为后续甘蓝型油

菜抗逆育种提供理论参考。

1　 甘蓝型油菜主要非生物胁迫及其响应机

制研究
1.1　干旱胁迫及其响应机制　干旱是影响甘蓝型

油菜生产的主要非生物胁迫之一，对油菜从种子萌

发到产量形成等多个关键生长阶段均具有抑制作

用，并影响品质；对此，油菜可启动自身的生理与

分子响应机制以提高耐旱性 [7]。现有的农艺措施、

育种技术及生物技术手段主要通过增强植株适应

性或改善生长环境，以缓解干旱胁迫的不利影响。

Palabyk 等 [8] 研究表明 Flg-22 处理通过激活 GABA
分流途径，并依赖丝裂原活化蛋白激酶（MAPK）级

联反应，差异性地调控甘蓝型油菜叶片和根系中的

GABA 代谢，从而增强植株的耐旱性。Rezayian 等 [9] 

研究表明，在干旱胁迫下，耐旱油菜品种 RGS003 比

敏感品种 Sarigol 表现出更稳定的生物量积累和更

高的脯氨酸含量，且丙二醛（MDA）积累较少；施用基金项目： 自然科学类校级课题（KZJ-2025-01）
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戊唑醇（PEN）可显著缓解干旱对 RGS003 生长的抑

制，并诱导 2 个品种的超氧化物歧化酶（SOD）、过

氧化氢酶（CAT）和多酚氧化酶（PPO）活性升高，但

对苯丙氨酸解氨酶（PAL）和酪氨酸解氨酶（TAL）
的诱导效应随胁迫加剧而减弱。袁大双等 [10] 研究

表明，BnMAPK2可调控植株叶片含水量、渗透能力，

降低膜脂过氧化，并且介导 STRS2-ABA 信号途径，

促进与干旱相关的基因在 ABA 信号通路中的表达，

以此提高甘蓝型油菜的耐旱性。Mi 等 [11] 研究表明，

水分亏缺胁迫下冬油菜通过协同调控活性氧清除、

内源激素动态变化及胁迫相关蛋白表达，重塑根系

构型，以适应干旱环境。Chen 等 [12] 研究表明，发根

农杆菌转化的甘蓝型油菜 Ri 系（A11 和 B3）通过

ABA 介导的气孔调控降低蒸腾、优化水分利用，并

在干旱下维持更高水势，展现出显著的抗旱性和育

种应用潜力。综上所述，甘蓝型油菜响应干旱胁迫

的机制涉及信号转导（如 MAPK、ABA）、代谢重塑

（如 GABA 分流、脯氨酸积累）以及生理调控（如气

孔行为、根系构型）等多个层面。现有研究虽已鉴

定出如 BnMAPK2、BnPgb1 等关键基因，并探索了

Flg-22、戊唑醇等外源物质的调控潜力，但多数研究

仍集中于单一基因或物质的效应分析，缺乏对多基

因协同调控网络及信号通路交叉互作的系统解析。

未来研究应注重利用多组学数据整合分析，揭示不

同调控层级之间的关联，为多基因聚合育种提供理

论支撑。

1.2　盐胁迫及其响应机制　在盐碱胁迫下，甘蓝

型油菜通过合成大量甜菜碱来增强自身的抗逆性，

从而维持植株正常生理活动 [13]。Xia 等 [14] 研究表

明，采用适宜浓度的异甜菊醇对甘蓝型油菜种子进

行浸种处理，可有效提高盐胁迫下幼苗的生物量和

可溶性蛋白含量，同时降低脯氨酸、甜菜碱及活性

氧（ROS）水平，减轻氧化损伤。此外，该处理还调

控了离子分布，使 Na⁺ 主要滞留于根部，而 K⁺ 更多

向地上部转运，表明异甜菊醇可能通过抑制 Na⁺ 向
上运输并促进 K⁺ 保留，增强油菜幼苗的耐盐性。

Mokari-Firuzsalari 等 [15] 研究表明，叶面喷施锌或表

油菜素内酯（EBL）均可缓解甘蓝型油菜的盐胁迫

伤害，且两者复合处理具有协同增效作用，能显著

增强植株耐盐性。Agnieszka 等 [16] 研究表明，油菜

金属硫蛋白（BnMT1-4）响应盐胁迫并与细菌互作，

其基因表达受盐胁迫和普城沙雷氏菌差异调控，并

与植物激素含量显著相关，说明 MTs 在植物适应环

境过程中功能多样。Cui 等 [17] 研究表明，甘蓝型油

菜 NHX 基因家族（18 个成员）通过介导 Na⁺ 转运

与区室化，在盐胁迫响应中发挥关键作用，其进化保

守性和表达可塑性为耐盐遗传改良提供了重要基因

资源。Ali 等 [18] 研究表明，褪黑素可通过激活抗氧

化防御、维持 K⁺ 稳态及调控 Na⁺ 转运相关基因（如

PM-SOS1、HAK5、HKT1 和 NHX）的表达，有效改善

盐胁迫下油菜叶片气体交换与离子平衡，并存在品

种特异性响应。

综上所述，甘蓝型油菜的耐盐机制是一个涉及

离子区隔化（如 NHX 家族）、渗透调节、活性氧清除

及激素信号整合的复杂系统。目前研究已从单一的

生理指标观测，深入到关键基因家族的功能解析及

外源物质的精准调控。未来的挑战在于如何将这些

分散的点状知识，串联成一张完整的盐胁迫响应网

络，并阐明不同调控层级之间的权重与互作关系。

1.3　低温胁迫及其响应机制　抗寒性强的甘蓝型

油菜品系在低温条件下通过积累可溶性糖、脯氨酸

等渗透调节物质以及维持较高叶绿素含量，以增强

细胞渗透调节与抗寒能力 [19]。Mi 等 [20] 研究表明，

夜间低温通过诱导甘蓝型油菜 LOC106368911 基因

表达进而提高种子芥酸含量，其表达差异源于不同

温度敏感性品系启动子中低温响应元件（LTR）的

功能完整性不同，揭示该基因在响应低温调控油脂

品质中起关键作用。Jin 等 [21] 研究表明，甘蓝型油

菜 BnGS3-3 基因启动子区域的自然变异通过影响

其表达水平，调控植株耐盐性与耐寒性，并与开花时

间、根长及产量等农艺性状相关，为抗逆育种提供

了重要遗传靶点。目前，甘蓝型油菜在低温信号通

路上的研究仍较为薄弱，而该领域的研究对解析其

耐寒调控机制具有重要意义。Hayat 等 [22] 研究表

明，外源褪黑素（100μmol/L）通过激活 DREB/CBF-
COR 通路及增强抗氧化防御系统，显著提高草莓耐

寒性，且该过程不依赖脱落酸（ABA）信号途径。鉴

于此，结合甘蓝型油菜低温信号通路研究的不足，未

来可针对性开展甘蓝型油菜中褪黑素与低温信号通

路（如 DREB/CBF-COR 通路）的关联机制研究，以

此填补甘蓝型油菜在该领域的研究空白，为其耐寒

性改良提供理论支撑。
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1.4　高温胁迫及其响应机制　长期高温胁迫会抑

制甘蓝型油菜的生殖生长，导致胚胎发育异常、受精

率下降及败育增加，进而降低种子产量和品质。高

温还引起幼嫩种子中生长素含量下降以及成熟种

子中脱落酸（ABA）和吲哚乙酸（IAA）减少，削弱种

子休眠性，同时影响硫代葡萄糖苷和油脂组成 [23]。

Ibrahim 等 [24] 研究表明，甘蓝型油菜植物血红蛋白

1（BnPgb1）可缓解高温引起的育性下降，其机制通

过调控活性氧水平及增强抗氧化酶活性，维持花药

抗坏血酸含量，从而减轻热胁迫对花粉发育的损害。

Hasanuzzaman 等 [25] 研究表明，外源脯氨酸（Pro）和
甘氨酸甜菜碱（GB）可通过协同增强抗氧化酶系统

与乙二醛酶活性，有效减轻高温胁迫引起的氧化损

伤和甲基乙二醛毒害，从而提高甘蓝型油菜幼苗的

耐热性。Zhu 等 [26] 研究表明，甘蓝型油菜 Hsf 基因

家族（64 个成员）在进化中发生 A9 亚类缺失及部

分成员结构变异，其 A3 等亚类成员可协同响应高

温、干旱与高 CO2 复合胁迫，为作物抗逆育种提供

新靶点。Lohani 等 [27] 研究表明，甘蓝 Hsf 基因家族

（35 个成员）在芸薹属作物进化中受多倍化驱动和

纯化选择作用，形成特有直系同源基因簇，其高度保

守的结构与表达模式为作物抗逆育种提供了重要基

因资源。

2　 甘蓝型油菜主要生物胁迫及其响应机制

研究
相较于非生物胁迫，由病原菌和害虫引发的

生物胁迫同样对甘蓝型油菜的安全生产构成严重

威胁。黑胫病、菌核病和蚜虫等是其主要生物胁

迫因子，常导致巨大的产量与经济损失。深入解

析其抗病抗虫机制，是制定绿色防控策略和培育抗

性品种的基础。斑球菌是一种真菌病原体，可引

起甘蓝型油菜黑胫病，给世界许多地区带来巨大

的产量和经济损失。Zou 等 [28] 研究表明，过表达

甘蓝型油菜 BnNAC19 基因可显著增强对黑斑病

菌（Leptosphaeria maculans）的抗性，该基因通过抑

制病原菌菌丝生长及孢子形成，并在幼苗与成株阶

段持续发挥正向免疫调控作用。近年来，甘蓝型油

菜对核盘菌侵染的响应机制研究取得了重要进展。

Joshi 等 [29] 研究表明，甘蓝型油菜响应核盘菌侵染

的长链非编码 RNA（lncRNA）可通过作为 miRNA
前体（如 miR156、miR169 和 miR394）及顺式或反

式调控机制参与抗病反应。Qasim 等 [30] 研究表明，

甘蓝型油菜抗病品系通过协同诱导氨基酸与次生代

谢物生物合成通路及乙烯、水杨酸和茉莉酸信号途

径，激活对菌核病的系统抗性。Li 等 [31] 研究表明，

甘蓝型油菜通过初期抑制蚜虫繁殖与后期增强耐受

性的双重策略响应蚜害，该过程涉及几丁质酶、过氧

化氢酶活性及钙信号通路等的协同调控，为抗蚜基

因克隆与品种选育提供了依据。

近年来，农业领域对于上述病害抗性机制的研

究仍相对匮乏，尤其是在关键基因及分子调控网络

的解析方面，尚处于起始阶段。该领域尚未得到充

分发掘，存在较大的探索空间。Tian等 [32] 研究表明，

CRISPR/Cas9 技术可有效克服甘蓝型油菜多倍体基

因冗余难题，为重要农艺性状的定向遗传改良及基

因功能解析提供了高效、精准的编辑工具，并展现出

广阔的应用潜力。Kumar 等 [33] 研究表明，CRISPR/
Cas9 系统凭借高效、灵活和可多基因编辑的特性，

为作物抗非生物胁迫（干旱、盐碱、极端温度及重金

属等）的精准遗传改良提供了革命性工具，显著加

速了抗逆作物品种的选育进程。Geng 等 [34] 研究表

明，CRISPR 介导的 BnaIDA 基因编辑可有效调控

甘蓝型油菜花器官脱落与角果抗裂性，结合快速回

交与位点特异性基因分型技术，为油菜精准育种提

供了高效实用的新策略。Hu 等 [35] 研究表明，利用

CRISPR/Cas9 技术系统解析根肿病抗性基因 Rcr1
的功能，发现其早期表达、特定结构域完整性及与半

胱氨酸蛋白酶互作是抗性产生的关键，为抗病育种

提供了新机制和可诱导型载体工具。

3　 甘蓝型油菜逆境胁迫响应能力提升的关

键调控策略
3.1　栽培管理　通过田间管理措施改善油菜生长

的微环境，降低胁迫强度，同时强化植株自身长势，

提升抗逆基础能力，是农业生产中最直接的调控手

段。Faralli 等 [36] 研究表明，在冬油菜初花期（GS6.0）
每 hm2 喷施 1 L 有效成分为二 -1- 对薄荷烯型抗

蒸腾剂，可有效缓解花期干旱胁迫，使种子产量平均

提高 22%，展现出良好的田间抗旱保护潜力。此外，

通过科学设定种植密度与依据气象条件实施精准播

期调控的协同栽培措施，亦能显著提升甘蓝型油菜

在逆境胁迫下的生长性能。

3.2　生理代谢调控　通过外源施加生理调节剂或
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营养物质，激活油菜自身的胁迫响应通路，快速提升

短期抗逆能力，适合应急或辅助遗传改良品种发挥

效能。Farooq 等 [37] 研究表明，茉莉酸甲酯（MJ）可

通过增强抗氧化酶活性、调控次生代谢过程并降低

植株砷积累，显著提高甘蓝型油菜对砷胁迫的耐受

性。Bano 等 [38] 研究表明，水杨酸与硫通过协同调

控碳水化合物代谢和乙烯合成，增强甘蓝型油菜抗

氧化防御能力并减少砷积累，从而有效缓解砷胁迫

导致的生长抑制与氧化损伤。Zhao 等 [39] 研究表明，

盐胁迫前预防性施加血红素（HS 处理）可通过增强

光合与抗氧化酶活性、减轻膜脂过氧化，有效改善油

菜幼苗生长并缓解盐胁迫伤害。Büra 等 [40] 研究表

明，外源蔗糖可通过协同调控渗透平衡与抗氧化酶

系统（如提升 CAT、APX 活性并优化 SOD 功能），

有效缓解盐胁迫对向日葵和油菜生长的抑制，且其

调控机制在两种作物中具有基因表达层面的差异。

综上所述，外源物质调控已成为增强甘蓝型油

菜抗逆性的重要途径。其作用本质在于激活作物的

内源防御机制，具体表现为增强抗氧化系统、维持离

子与渗透诱导胁迫相关基因的表达。未来，该领域

的研究需向更系统、更深入的方向发展：首先在于探

讨不同外源物质间的协同效应与互作机理；其次，需

深入解析这些物质如何被整合至 ABA、ROS、Ca2+

等内源信号网络中，从而精密调控抗逆反应；最后，

应积极探索如纳米材料等新型递送技术，以解决其

田间应用的稳定性和效率瓶颈，最终为实现甘蓝型

油菜的精准、高效抗逆栽培提供解决方案。

3.3　基因工程技术　随着全球植物油需求的持续

增长，提高油料作物产量已成为迫切需求。然而，生

物与非生物胁迫严重制约了作物生产力。甘蓝型

油菜作为重要油料作物，其抗逆性遗传改良日益受

到关注。利用基因工程手段对油菜抗逆性状进行

定向改良，创制具有强抗逆表型的优良材料，已成

为提升其逆境适应能力的关键技术途径之一。Ya
等 [41] 研究表明，甘蓝型油菜 BnaHB6 同源基因在序

列高度相似基础上呈现功能分化，其中 BnaA09HB6
和 BnaC08HB6 通过直接结合并正调控胁迫响应基

因 BnaABF4 和 BnaDREB2A，在脱水与盐胁迫应答

中发挥了关键作用。Wang 等 [42] 研究表明，碱性盐

胁迫下油菜根系通过激活 Ca2+、ABA 和 ROS 信号

通路及其交叉互作，调控 bHLH、WRKY 等转录因

子及有机酸代谢，从而增强对胁迫的耐受性。Liu 
等 [43] 研究表明，O- 糖基化转移酶基因 BnaC09.
OGT 通过促进不饱和脂肪酸生物合成、增强抗氧

化能力及渗透调节，显著提高甘蓝型油菜的渗透胁

迫耐受性。Guo 等 [44] 研究表明，甘蓝型油菜 CHYR
基因家族在进化中显著扩张且成员功能分化，其中

BnA03.CHYR.1 通过定位于细胞核与细胞质，受盐

胁迫特异性诱导表达，其过表达可显著增强植物的

耐盐性。Soostani 等 [45] 研究表明，10 mg/L 壳聚糖

可通过调控离子稳态、增强抗氧化酶活性及相关基

因表达（SOD、APX、PAL），并促进渗透调节物质积

累，有效提升油菜的耐盐性。Wang 等 [46] 研究表明，

通过动态转录组分析与统计建模（PLRKSC）筛选

出的 346 个关键盐响应基因（如 BnaC07g40860D/
RD26）在油菜耐盐性中起核心作用，其过表达可显

著增强植株抗逆性，为耐盐育种提供重要候选基因。

尽管传统育种在油菜改良中已取得一定成效，

但在耐逆性状选育方面仍存在明显局限，包括现有

种质中遗传变异匮乏、育种周期长、难以在分离群体

中获得理想基因型组合等，这些问题促使研究者转

向更高效精准的育种手段。基因组编辑技术为解决

上述挑战提供了新途径，它能够以精准、可预测的方

式对基因组进行最小干扰的修饰，已在多种作物包

括油料作物中成功应用 [47]。与传统方法依赖自然

变异或人工诱变并结合耗时表型筛选不同，基因组

编辑可在优良遗传背景中直接引入目标性状变异，

大幅提高育种效率与精准性 [48]，为油菜抗逆性定向

改良提供了强大工具。

4　总结与展望
本综述系统梳理了甘蓝型油菜响应生物与非

生物胁迫的生理与分子机制，并评述了栽培管理、外

源物质调控及基因工程等抗逆策略的应用前景。当

前研究已从单一胁迫因子、单一基因功能研究，逐

渐向多胁迫交叉响应、多基因协同调控网络解析方

向发展。然而，该领域仍面临以下挑战：（1）多数研

究集中于苗期或成株期，对种子萌发与成苗阶段的

抗逆机制关注不足；（2）对不同信号通路（如 ABA、

MAPK、ROS 等）之间的交叉对话机制理解尚浅；

（3）尽管基因编辑技术展现出巨大潜力，但其在甘

蓝型油菜多基因编辑中的应用仍处于起步阶段。

未来，甘蓝型油菜抗逆研究将呈现以下趋势：
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在理论上，借助多组学整合分析，构建从信号感

知到表型输出的系统性调控网络；在技术上，利

用 CRISPR 等基因编辑工具实现关键位点的精准

编辑与多基因聚合，并结合人工智能模型预测优

良基因型；在生产上，通过“基因型—环境—管理”

（G×E×M）的协同优化，培育出适应未来气候变化

的强抗逆、高稳定性油菜新品种，为我国食用油安全

战略提供坚实保障。
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