陇中半干旱区不同种植模式与密度对马铃薯产量及抗旱性的影响

胡新元¹ 柳永强² 陆立银² 谢奎忠² 罗爱花² (¹甘肃省农业科学院, 兰州 730070; ²甘肃省农业科学院马铃薯研究所, 兰州 730070)

摘要:在陇中半干旱区,采用黑膜覆盖、黑膜覆盖+滴灌两种种植模式,研究了不同种植密度下陇薯7号的生长发育、产量及抗旱性。结果表明,黑膜覆盖模式下,随种植密度的增加,马铃薯产量与大薯重量均先升高后降低,在密度为51000株/hm²时产量最高;黑膜覆盖+滴灌模式下,密度51000株/hm²与57000株/hm²的产量较高,二者基本持平。黑膜覆盖+滴灌模式比黑膜覆盖模式马铃薯产量增幅明显,其平均抗旱指数达到1.40,说明黑膜覆盖+滴灌是陇中旱作区马铃薯抗旱栽培的高效模式。

关键词:马铃薯;半干旱区;种植密度;生长;抗旱

马铃薯是世界上重要的粮菜兼用作物之一, 我国马铃薯种植面积及总产居世界首位[1-2]。黑 膜覆盖+滴灌种植模式是目前定西旱作区主要推 广的马铃薯种植模式[3],其在半干旱区的应用,具 有诸多优势: 节水, 有效减少渗漏(土渠渗漏、大水 漫灌造成的渗漏),减少了灌溉的实有面积,通过 地膜覆盖减少蒸发[4-5];节肥,滴灌模式只湿润作 物的根层,底肥一次性集中施用,避免了肥料的损 失,提高了肥料的利用率[6-7];节约土地,避免了因 田梗、土渠等占用土地,提高了土地利用率[8]。而 目前关于陇中旱作区黑膜覆盖+滴灌模式的相 关研究比较少,因此本研究利用黑膜覆盖、黑膜覆 盖+滴灌两种种植方式,结合不同种植密度,通过 对马铃薯生长发育、产量和抗旱性的分析,研究了 适合陇中半干旱区黑膜覆盖+滴灌模式下马铃薯 的种植密度,为区域马铃薯的科学种植提供数据 支撑。

1 材料与方法

1.1 材料与试验地概况 选用中晚熟马铃薯品种 陇薯 7 号为试验材料。试验地点位于定西市安定 区香泉镇香泉村,103°52′~105°13′E、34°26′~35°35′N;海拔约 2577.3m, 无霜期 122~160d, 年 均降雨量 350~600mm, 蒸发量 1400mm。土壤为典

型的黄绵土,0~20cm 耕层土壤有机质 12.90g/kg、全 氮 0.85g/kg、全磷 0.91g/kg、全钾 21.61g/kg、速效氮 63.00mg/kg、速效磷 30.01mg/kg、速效钾 376.00mg/kg, 土壤 pH 8.47。试验地前茬为马铃薯,播种前深耕 45~55cm,旋耕耙耱,结合深耕施肥,每 hm² 施肥量:鸡粪 11250kg、尿素 300kg、磷酸二铵 375kg、复合肥 1200kg。

- 1.2 试验方法 试验设两种种植模式:黑膜覆盖,黑膜覆盖+滴灌。设5个密度梯度处理,T1:33000株/hm²,T2:39000株/hm²,T3:45000株/hm²,T3:45000株/hm²,T4:51000株/hm²,T5:57000株/hm²。采用裂区设计,随机区组排列,4垄区,垄宽1.2m、长7m,小区面积33.6m²,3次重复。2015年5月11日播种,人工点播,播深8~10cm;10月15日收获。
- 1.3 指标测定 株高用直尺直接测定;茎粗用数显卡尺测定;收获后统计大薯(≥75g)重量、小薯(<75g)重量及小区产量,计算折合产量;计算抗旱指数,抗旱指数为黑膜覆盖+滴灌产量相对于黑膜覆盖产量的比值^[2]。采用 Excel 与 DPS 软件进行统计分析。

2 结果与分析

2.1 两种种植模式下密度对株高和茎粗的影响 从表 1 可知,两种模式、不同种植密度下陇薯 7 号的 株高有所差异,黑膜覆盖 + 滴灌模式下不同时期、 不同密度的株高整体高于黑膜覆盖模式下的株高, 但差异不大。同一种植模式下,T4、T5 的株高明显 高于 T1、T2、T3。茎粗则没有明显的变化规律。

基金项目:农业部公益性行业(农业)科研专项(201503001-7)柳永强为共同第一作者

通信作者:陆立银

8.79

15.04

衣 1 网种种值模式下省度对与拉者体高和圣租的影响							
处理		黑膜覆盖模式			黑膜覆盖 + 滴灌模式		
处理		7月16日	8月2日	8月17日	7月16日	8月2日	8月17日
株高(cm)	T1	59.87	76.79	81.76	65.75	86.12	85.36
	T2	63.32	75.63	84.23	63.92	81.23	85.78
	Т3	67.75	73.72	89.24	69.28	78.37	89.05
	T4	72.13	81.83	89.95	74.76	91.13	93.38
	T5	70.92	83.29	93.42	77.37	93.42	94.13
茎粗(mm)	T1	11.07	14.58	15.38	11.21	15.43	14.78
	T2	11.53	12.96	17.21	11.96	16.23	16.31
	Т3	10.76	12.18	18.42	10.23	12.85	17.42
	T4	10.47	14.75	14.39	9.52	12.31	14.23

12.87

15.22

表 1 两种种植模式下密度对马铃薯株高和茎粗的影响

2.2 两种种植模式下密度对产量的影响 从表 2 可知,两种种植模式下,种植密度对陇薯 7 号的大薯重量和产量影响较大。黑膜覆盖模式下,随种植密度的增加,马铃薯产量与大薯重量均先升高后降低,在密度为 51000 株 /hm² 时大薯重量和产量

9.68

T5

最高; 黑膜覆盖+滴灌模式下,密度 51000 株 /hm² 与 45000 株 /hm² 的大薯重量和产量较高,二者基本持平。从平均值来看,黑膜覆盖+滴灌比黑膜覆盖的大薯重量和产量分别增加 49.52% 和 40.01%。

11.79

黑膜覆盖模式 黑膜覆盖+滴灌模式 处理 抗旱指数 大薯重量 小薯重量 产量 大薯重量 小薯重量 产量 (t/hm^2) (t/hm^2) (t/hm^2) (t/hm^2) (t/hm^2) (t/hm^2) T1 20.25 3.04 23.29 31.68 2.19 33.87 1.45 T2 23.41* 3.49* 26.91* 32.99 2.95 35.94 1.34 T3 24.72* 3.39 28.10** 35.52* 3.75* 39.27^{*} 1.40 T4 25.57** 4.88** 30.45** 35.61* 3.60* 39.20^{*} 1.29 34.93* 38.04^{*} T5 20.27 4.06 24.34 3.11 1.56 平均 34.15 3.12 37.27 1.40 22.84 3.77 26.62

表 2 两种种植模式下密度对马铃薯产量和大薯重量的影响

2.3 两种种植模式的抗旱指数比较 从表 2 可知,在 5 个不同种植密度下,黑膜覆盖 + 滴灌模式的抗旱指数均大于 1,平均达到 1.40,其中 57000 株 /hm² 密度下的抗旱指数最高达到 1.56。说明定西半干旱区黑膜覆盖 + 滴灌模式种植马铃薯的抗旱效果良好。

3 结论

本研究表明,黑膜覆盖+滴灌模式比黑膜覆盖模式下的马铃薯产量和大薯重量均明显增加。黑膜覆盖模式下,种植密度51000株/hm²时产量最高。黑膜覆盖+滴灌模式下,密度51000株/hm²与45000株/hm²的大薯重量和产量较高,二者基本持平。通过黑膜覆盖+滴灌相对黑膜覆盖的抗旱指数分析发现,黑膜覆盖+滴灌水抗旱指数均大于1,平均值达到1.40,说明黑膜覆盖+滴灌种植模式是提高马铃薯抗旱的高效方法。

参考文献

- [1] 杨恩琼. 中国马铃薯产业化发展之路 [J]. 种子,2007,26 (10): 90-92 [2] 谢奎忠,陆立银,胡新元,等. 干旱半干旱地区适宜马铃薯主粮化战略新品种筛选试验 [J]. 中国种业,2017 (9): 48-50
- [3] 曹树人. 旱作区黑膜马铃薯栽培技术十要点 [J]. 农机科技推广, 2012 (6): 11-12
- [4] 林萍. 膜下滴灌的节水潜力及其发展意义 [J]. 现代农业科技,2012 (7): 264-265
- [5] 杨国成. 膜下滴灌节水技术的应用和意义 [J]. 农业科技与信息, 2009 (21): 33-34
- [6] 柳永强,王一航,张武,等. 试管苗移栽压苗高效生产脱毒微型种薯技术[J]. 中国种业,2010(1):41
- [7] 孙芳. 马铃薯源、库关系的营养调控技术研究现状与展望[J]. 内蒙古农业科技,2009(2): 20-24
- [8] 张万青. 膜下滴灌技术优势分析与发展前景 [J]. 农业与技术, 2015, 35 (18): 18-19

(收稿日期: 2017-09-15)

^{*}表示在5%水平差异显著; **表示在1%水平差异极显著